Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
PLoS One ; 19(3): e0299143, 2024.
Article in English | MEDLINE | ID: mdl-38547145

ABSTRACT

Epidemic data are often difficult to interpret due to inconsistent detection and reporting. As these data are critically relied upon to inform policy and epidemic projections, understanding reporting trends is similarly important. Early reporting of the COVID-19 pandemic in particular is complicated, due to changing diagnostic and testing protocols. An internal audit by the State of Florida, USA found numerous specific examples of irregularities in COVID-19 case and death reports. Using case, hospitalization, and death data from the the first year of the COVID-19 pandemic in Florida, we present approaches that can be used to identify the timing, direction, and magnitude of some reporting changes. Specifically, by establishing a baseline of detection probabilities from the first (spring) wave, we show that transmission trends among all age groups were similar, with the exception of the second summer wave, when younger people became infected earlier than seniors, by approximately 2 weeks. We also found a substantial drop in case-fatality risk (CFR) among all age groups over the three waves during the first year of the pandemic, with the most drastic changes seen in the 0 to 39 age group. The CFR trends provide useful insights into infection detection that would not be possible by relying on the number of tests alone. During the third wave, for which we have reliable hospitalization data, the CFR was remarkably stable across all age groups. In contrast, the hospitalization-to-case ratio varied inversely with cases while the death-to-hospitalization ratio varied proportionally. Although specific trends are likely to vary between locales, the approaches we present here offer a generic way to understand the substantial changes that occurred in the relationships among the key epidemic indicators.


Subject(s)
COVID-19 , Humans , Infant, Newborn , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Florida/epidemiology , Pandemics , Hospitalization
2.
Nat Commun ; 14(1): 7260, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985664

ABSTRACT

Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make months ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national and state-level projections. Here, we find SMH performance varied widely as a function of both scenario validity and model calibration. We show scenarios remained close to reality for 22 weeks on average before the arrival of unanticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of participating models that preserved variation between models (using the linear opinion pool method) was consistently more reliable than any single model in periods of valid scenario assumptions, while projection interval coverage was near target levels. SMH projections were used to guide pandemic response, illustrating the value of collaborative hubs for longer-term scenario projections.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics/prevention & control , SARS-CoV-2 , Uncertainty
3.
medRxiv ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37461674

ABSTRACT

Our ability to forecast epidemics more than a few weeks into the future is constrained by the complexity of disease systems, our limited ability to measure the current state of an epidemic, and uncertainties in how human action will affect transmission. Realistic longer-term projections (spanning more than a few weeks) may, however, be possible under defined scenarios that specify the future state of critical epidemic drivers, with the additional benefit that such scenarios can be used to anticipate the comparative effect of control measures. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make 6-month ahead projections of the number of SARS-CoV-2 cases, hospitalizations and deaths. The SMH released nearly 1.8 million national and state-level projections between February 2021 and November 2022. SMH performance varied widely as a function of both scenario validity and model calibration. Scenario assumptions were periodically invalidated by the arrival of unanticipated SARS-CoV-2 variants, but SMH still provided projections on average 22 weeks before changes in assumptions (such as virus transmissibility) invalidated scenarios and their corresponding projections. During these periods, before emergence of a novel variant, a linear opinion pool ensemble of contributed models was consistently more reliable than any single model, and projection interval coverage was near target levels for the most plausible scenarios (e.g., 79% coverage for 95% projection interval). SMH projections were used operationally to guide planning and policy at different stages of the pandemic, illustrating the value of the hub approach for long-term scenario projections.

4.
BMC Infect Dis ; 23(1): 287, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142984

ABSTRACT

BACKGROUND: Decision-makers impose COVID-19 mitigations based on public health indicators such as reported cases, which are sensitive to fluctuations in supply and demand for diagnostic testing, and hospital admissions, which lag infections by up to two weeks. Imposing mitigations too early has unnecessary economic costs while imposing too late leads to uncontrolled epidemics with unnecessary cases and deaths. Sentinel surveillance of recently-symptomatic individuals in outpatient testing sites may overcome biases and lags in conventional indicators, but the minimal outpatient sentinel surveillance system needed for reliable trend estimation remains unknown. METHODS: We used a stochastic, compartmental transmission model to evaluate the performance of various surveillance indicators at reliably triggering an alarm in response to, but not before, a step increase in transmission of SARS-CoV-2. The surveillance indicators included hospital admissions, hospital occupancy, and sentinel cases with varying levels of sampling effort capturing 5, 10, 20, 50, or 100% of incident mild cases. We tested 3 levels of transmission increase, 3 population sizes, and conditions of either simultaneous transmission increase or lagged increase in the older population. We compared the indicators' performance at triggering alarm soon after, but not prior, to the transmission increase. RESULTS: Compared to surveillance based on hospital admissions, outpatient sentinel surveillance that captured at least 20% of incident mild cases could trigger an alarm 2 to 5 days earlier for a mild increase in transmission and 6 days earlier for a moderate or strong increase. Sentinel surveillance triggered fewer false alarms and averted more deaths per day spent in mitigation. When transmission increase in older populations lagged the increase in younger populations by 14 days, sentinel surveillance extended its lead time over hospital admissions by an additional 2 days. CONCLUSIONS: Sentinel surveillance of mild symptomatic cases can provide more timely and reliable information on changes in transmission to inform decision-makers in an epidemic like COVID-19.


Subject(s)
COVID-19 , Humans , Aged , COVID-19/epidemiology , SARS-CoV-2 , Sentinel Surveillance , Outpatients , Public Health
5.
Proc Natl Acad Sci U S A ; 120(18): e2207537120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37098064

ABSTRACT

Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Uncertainty , Disease Outbreaks/prevention & control , Public Health , Pandemics/prevention & control
6.
medRxiv ; 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36945423

ABSTRACT

We evaluate approaches to vaccine distribution using an agent-based model of human activity and COVID-19 transmission calibrated to detailed trends in cases, hospitalizations, deaths, seroprevalence, and vaccine breakthrough infections in Florida, USA. We compare the incremental effectiveness for four different distribution strategies at four different levels of vaccine availability, reflecting different income settings' historical COVID-19 vaccine distribution. Our analysis indicates that the best strategy to reduce severe outcomes is to actively target high disease-risk individuals. This was true in every scenario, although the advantage was greatest for the middle-income-country availability assumptions, and relatively modest compared to a simple mass vaccination approach for rapid, high levels of vaccine availability. Ring vaccination, while generally the most effective strategy for reducing infections, ultimately proved least effective at preventing deaths. We also consider using age group as a practical, surrogate measure for actual disease-risk targeting; this approach still outperforms both simple mass distribution and ring vaccination. We also find that the magnitude of strategy effectiveness depends on when assessment occurs (e.g., after delta vs. after omicron variants). However, these differences in absolute benefit for the strategies do not change the ranking of their performance at preventing severe outcomes across vaccine availability assumptions.

7.
Bull Math Biol ; 84(6): 62, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35507206

ABSTRACT

Polio can circulate unobserved in regions that are challenging to monitor. To assess the probability of silent circulation, simulation models can be used to understand transmission dynamics when detection is unreliable. Model assumptions, however, impact the estimated probability of silent circulation. Here, we examine the impact of having distinct populations, rather than a single well-mixed population, with a discrete-individual model including environmental surveillance. We show that partitioning a well-mixed population into networks of distinct communities may result in a higher probability of silent circulation as a result of the time it takes for the detection of a circulation event. Population structure should be considered when assessing polio control in a region with many loosely interacting communities.


Subject(s)
Poliomyelitis , Poliovirus , Humans , Mathematical Concepts , Models, Biological , Poliomyelitis/diagnosis , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Probability
8.
Epidemics ; 39: 100555, 2022 06.
Article in English | MEDLINE | ID: mdl-35367729

ABSTRACT

Keystone virus (KEYV) is an under-studied orthobunyavirus that is transmitted via both horizontal and vertical cycles involving various mosquito species and vertebrate hosts. Historical evidence indicates that KEYV causes sub-clinical infections in humans, and some case studies draw links between this virus and encephalitis. Given KEYV's potential to cause human infections, it is plausible that it causes an under-appreciated proportion of both generic viral infections and unidentified viral encephalitis cases. This review summarizes current knowledge of KEYV and its disease dynamics in order to better understand the virus' medical and economic burden on human populations.


Subject(s)
Public Health , Animals , Florida/epidemiology , Humans
9.
medRxiv ; 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35018391

ABSTRACT

In this report, we use a detailed simulation model to assess and project the COVID-19 epidemic in Florida. The model is a data-driven, stochastic, discrete-time, agent based model with an explicit representation of people and places. Using the model, we find that the omicron variant wave in Florida is likely to cause many more infections than occurred during the delta variant wave. Due to testing limitations and often mild symptoms, however, we anticipate that omicron infections will be underreported compared to delta. We project that reported cases of COVID-19 will continue to grow significantly and peak in early January 2022, and that the number of reported COVID-19 deaths due to omicron may be 1/3 of the total caused by the delta wave.

10.
Int J Epidemiol ; 51(1): 265-278, 2022 02 18.
Article in English | MEDLINE | ID: mdl-34458913

ABSTRACT

BACKGROUND: Infectious disease outbreaks present unique challenges to study designs for vaccine evaluation. Test-negative design (TND) studies have previously been used to estimate vaccine effectiveness and have been proposed for Ebola virus disease (EVD) vaccines. However, there are key differences in how cases and controls are recruited during outbreaks and pandemics of novel pathogens, whcih have implications for the reliability of effectiveness estimates using this design. METHODS: We use a modelling approach to quantify TND bias for a prophylactic vaccine under varying study and epidemiological scenarios. Our model accounts for heterogeneity in vaccine distribution and for two potential routes to testing and recruitment into the study: self-reporting and contact-tracing. We derive conventional and hybrid TND estimators for this model and suggest ways to translate public health response data into the parameters of the model. RESULTS: Using a conventional TND study, our model finds biases in vaccine effectiveness estimates. Bias arises due to differential recruitment from self-reporting and contact-tracing, and due to clustering of vaccination. We estimate the degree of bias when recruitment route is not available, and propose a study design to eliminate the bias if recruitment route is recorded. CONCLUSIONS: Hybrid TND studies can resolve the design bias with conventional TND studies applied to outbreak and pandemic response testing data, if those efforts collect individuals' routes to testing. Without route to testing, other epidemiological data will be required to estimate the magnitude of potential bias in a conventional TND study. Since these studies may need to be conducted retrospectively, public health responses should obtain these data, and generic protocols for outbreak and pandemic response studies should emphasize the need to record routes to testing.


Subject(s)
Hemorrhagic Fever, Ebola , Democratic Republic of the Congo/epidemiology , Disease Outbreaks/prevention & control , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Humans , Reproducibility of Results , Retrospective Studies , Vaccination
11.
Am J Epidemiol ; 190(7): 1396-1405, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33576387

ABSTRACT

Comparison of coronavirus disease 2019 (COVID-19) case numbers over time and between locations is complicated by limits to virological testing to confirm severe acute respiratory syndrome coronavirus 2 infection. The proportion of tested individuals who have tested positive (test-positive proportion, TPP) can potentially be used to inform trends in incidence. We propose a model for testing in a population experiencing an epidemic of COVID-19 and derive an expression for TPP in terms of well-defined parameters related to testing and presence of other pathogens causing COVID-19-like symptoms. In the absence of dramatic shifts of testing practices in time or between locations, the TPP is positively correlated with the incidence of infection. We show that the proportion of tested individuals who present COVID-19-like symptoms encodes information similar to the TPP but has different relationships with the testing parameters, and can thus provide additional information regarding dynamic changes in TPP and incidence. Finally, we compare data on confirmed cases and TPP from US states up to October 2020. We conjecture why states might have higher or lower TPP than average. Collection of symptom status and age/risk category of tested individuals can increase the utility of TPP in assessing the state of the pandemic in different locations and times.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/transmission , Models, Theoretical , Population Surveillance/methods , Humans , Incidence , Pandemics , SARS-CoV-2
12.
medRxiv ; 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33173914

ABSTRACT

Policymakers make decisions about COVID-19 management in the face of considerable uncertainty. We convened multiple modeling teams to evaluate reopening strategies for a mid-sized county in the United States, in a novel process designed to fully express scientific uncertainty while reducing linguistic uncertainty and cognitive biases. For the scenarios considered, the consensus from 17 distinct models was that a second outbreak will occur within 6 months of reopening, unless schools and non-essential workplaces remain closed. Up to half the population could be infected with full workplace reopening; non-essential business closures reduced median cumulative infections by 82%. Intermediate reopening interventions identified no win-win situations; there was a trade-off between public health outcomes and duration of workplace closures. Aggregate results captured twice the uncertainty of individual models, providing a more complete expression of risk for decision-making purposes.

13.
Trials ; 21(1): 839, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33032661

ABSTRACT

BACKGROUND: Current urban vector control strategies have failed to contain dengue epidemics and to prevent the global expansion of Aedes-borne viruses (ABVs: dengue, chikungunya, Zika). Part of the challenge in sustaining effective ABV control emerges from the paucity of evidence regarding the epidemiological impact of any Aedes control method. A strategy for which there is limited epidemiological evidence is targeted indoor residual spraying (TIRS). TIRS is a modification of classic malaria indoor residual spraying that accounts for Aedes aegypti resting behavior by applying residual insecticides on exposed lower sections of walls (< 1.5 m), under furniture, and on dark surfaces. METHODS/DESIGN: We are pursuing a two-arm, parallel, unblinded, cluster randomized controlled trial to quantify the overall efficacy of TIRS in reducing the burden of laboratory-confirmed ABV clinical disease (primary endpoint). The trial will be conducted in the city of Merida, Yucatan State, Mexico (population ~ 1million), where we will prospectively follow 4600 children aged 2-15 years at enrollment, distributed in 50 clusters of 5 × 5 city blocks each. Clusters will be randomly allocated (n = 25 per arm) using covariate-constrained randomization. A "fried egg" design will be followed, in which all blocks of the 5 × 5 cluster receive the intervention, but all sampling to evaluate the epidemiological and entomological endpoints will occur in the "yolk," the center 3 × 3 city blocks of each cluster. TIRS will be implemented as a preventive application (~ 1-2 months prior to the beginning of the ABV season). Active monitoring for symptomatic ABV illness will occur through weekly household visits and enhanced surveillance. Annual sero-surveys will be performed after each transmission season and entomological evaluations of Ae. aegypti indoor abundance and ABV infection rates monthly during the period of active surveillance. Epidemiological and entomological evaluation will continue for up to three transmission seasons. DISCUSSION: The findings from this study will provide robust epidemiological evidence of the efficacy of TIRS in reducing ABV illness and infection. If efficacious, TIRS could drive a paradigm shift in Aedes control by considering Ae. aegypti behavior to guide residual insecticide applications and changing deployment to preemptive control (rather than in response to symptomatic cases), two major enhancements to existing practice. TRIAL REGISTRATION: ClinicalTrials.gov NCT04343521 . Registered on 13 April 2020. The protocol also complies with the WHO International Clinical Trials Registry Platform (ICTRP) (Additional file 1). PRIMARY SPONSOR: National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIH/NIAID).


Subject(s)
Aedes , Dengue , Insecticides , Zika Virus Infection , Zika Virus , Animals , Child , Dengue/diagnosis , Dengue/epidemiology , Dengue/prevention & control , Humans , Mexico/epidemiology , Mosquito Control , Mosquito Vectors , Randomized Controlled Trials as Topic
14.
Proc Natl Acad Sci U S A ; 117(6): 3319-3325, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31974303

ABSTRACT

Viruses transmitted by Aedes mosquitoes, such as dengue, Zika, and chikungunya, have expanding ranges and seem unabated by current vector control programs. Effective control of these pathogens likely requires integrated approaches. We evaluated dengue management options in an endemic setting that combine novel vector control and vaccination using an agent-based model for Yucatán, Mexico, fit to 37 y of data. Our intervention models are informed by targeted indoor residual spraying (TIRS) experiments; trial outcomes and World Health Organization (WHO) testing guidance for the only licensed dengue vaccine, CYD-TDV; and preliminary results for in-development vaccines. We evaluated several implementation options, including varying coverage levels; staggered introductions; and a one-time, large-scale vaccination campaign. We found that CYD-TDV and TIRS interfere: while the combination outperforms either alone, performance is lower than estimated from their separate benefits. The conventional model hypothesized for in-development vaccines, however, performs synergistically with TIRS, amplifying effectiveness well beyond their independent impacts. If the preliminary performance by either of the in-development vaccines is upheld, a one-time, large-scale campaign followed by routine vaccination alongside aggressive new vector control could enable short-term elimination, with nearly all cases avoided for a decade despite continuous dengue reintroductions. If elimination is impracticable due to resource limitations, less ambitious implementations of this combination still produce amplified, longer-lasting effectiveness over single-approach interventions.


Subject(s)
Dengue Vaccines , Dengue/prevention & control , Immunization Programs , Models, Biological , Mosquito Control/methods , Animals , Dengue/epidemiology , Dengue Vaccines/administration & dosage , Dengue Vaccines/immunology , Dengue Vaccines/therapeutic use , Dengue Virus/immunology , Humans , Mexico , Mosquito Vectors
15.
J R Soc Interface ; 16(157): 20190234, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31431184

ABSTRACT

The World Health Organization (WHO) currently recommends pre-screening for past infection prior to administration of the only licensed dengue vaccine, CYD-TDV. Using a threshold modelling analysis, we identify settings where this guidance prohibits positive net-benefits, and are thus unfavourable. Generally, however, our model shows test-then-vaccinate strategies can improve CYD-TDV economic viability: effective testing reduces unnecessary vaccination costs while increasing health benefits. With sufficiently low testing cost, those trends outweigh additional screening costs, expanding the range of settings with positive net-benefits. This work highlights two aspects for further analysis of test-then-vaccinate strategies. We found that starting routine testing at younger ages could increase benefits; if real tests are shown to sufficiently address safety concerns, the manufacturer, regulators and WHO should revisit guidance restricting use to 9-years-and-older recipients. We also found that repeat testing could improve return-on-investment (ROI), despite increasing intervention costs. Thus, more detailed analyses should address questions on repeat testing and testing periodicity, in addition to real test sensitivity and specificity. Our results follow from a mathematical model relating ROI to epidemiology, intervention strategy, and costs for testing, vaccination and dengue infections. We applied this model to a range of strategies, costs and epidemiological settings pertinent to CYD-TDV. However, general trends may not apply locally, so we provide our model and analyses as an R package available via CRAN, denvax. To apply to their setting, decision-makers need only local estimates of age-specific seroprevalence and costs for secondary infections.


Subject(s)
Cost-Benefit Analysis , Dengue Vaccines/economics , Dengue Vaccines/immunology , Dengue/prevention & control , Aging , Animals , Child , Humans , Models, Biological , Serologic Tests , Vaccination
16.
Infect Dis Model ; 4: 239-250, 2019.
Article in English | MEDLINE | ID: mdl-31312777

ABSTRACT

As polio-endemic countries move towards elimination, infrequent first infections and incomplete surveillance make it difficult to determine when the virus has been eliminated from the population. Eichner and Dietz [American Journal of Epidemiology, 143, 8 (1996)] proposed a model to estimate the probability of silent polio circulation depending upon when the last paralytic case was detected. Using the same kind of stochastic model they did, we additionally model waning polio immunity in the context of isolated, small, and unvaccinated populations. We compare using the Eichner and Dietz assumption of an initial case at the start of the simulation to a more accurate determination that observes the first case. The former estimates a higher probability of silent circulation in small populations, but this effect diminishes with increasing model population. We also show that stopping the simulation after a specific time estimates a lower probability of silent circulation than when all replicates are run to extinction, though this has limited impact on small populations. Our extensions to the Eichner and Dietz work improve the basis for decisions concerning the probability of silent circulation. Further model realism will be needed for accurate silent circulation risk assessment.

17.
PLoS Negl Trop Dis ; 12(6): e0006570, 2018 06.
Article in English | MEDLINE | ID: mdl-29939983

ABSTRACT

BACKGROUND: Historically, mosquito control programs successfully helped contain malaria and yellow fever, but recent efforts have been unable to halt the spread of dengue, chikungunya, or Zika, all transmitted by Aedes mosquitoes. Using a dengue transmission model and results from indoor residual spraying (IRS) field experiments, we investigated how IRS-like campaign scenarios could effectively control dengue in an endemic setting. METHODS AND FINDINGS: In our model, we found that high levels of household coverage (75% treated once per year), applied proactively before the typical dengue season could reduce symptomatic infections by 89.7% (median of 1000 simulations; interquartile range [IQR]:[83.0%, 94.8%]) in year one and 78.2% (IQR: [71.2%, 88.0%]) cumulatively over the first five years of an annual program. Lower coverage had correspondingly lower effectiveness, as did reactive campaigns. Though less effective than preventative campaigns, reactive and even post-epidemic interventions retain some effectiveness; these campaigns disrupt inter-seasonal transmission, highlighting an off-season control opportunity. Regardless, none of the campaign scenarios maintain their initial effectiveness beyond two seasons, instead stabilizing at much lower levels of benefit: in year 20, median effectiveness was only 27.3% (IQR: [-21.3%, 56.6%]). Furthermore, simply ceasing an initially successful program exposes a population with lowered herd immunity to the same historical threat, and we observed outbreaks more than four-fold larger than pre-intervention outbreaks. These results do not take into account evolving insecticide resistance, thus long-term effectiveness may be lower if new, efficacious insecticides are not developed. CONCLUSIONS: Using a detailed agent-based dengue transmission model for Yucatán State, Mexico, we predict that high coverage indoor residual spraying (IRS) interventions can largely eliminate transmission for a few years, when applied a few months before the typical seasonal epidemic peak. However, vector control succeeds by preventing infections, which precludes natural immunization. Thus, as a population benefits from mosquito control, it gradually loses naturally acquired herd immunity, and the control effectiveness declines; this occurs across all of our modeled scenarios, and is consistent with other empirical work. Long term control that maintains early effectiveness would require some combination of increasing investment, complementary interventions such as vaccination, and control programs across a broad region to diminish risk of importation.


Subject(s)
Aedes/drug effects , Dengue/prevention & control , Disease Outbreaks/prevention & control , Insecticides/pharmacology , Mosquito Control/methods , Animals , Dengue/epidemiology , Dengue/transmission , Dengue/virology , Humans , Insecticide Resistance , Mexico/epidemiology , Seasons
18.
PLoS Negl Trop Dis ; 12(3): e0006298, 2018 03.
Article in English | MEDLINE | ID: mdl-29543910

ABSTRACT

Response to Zika virus (ZIKV) invasion in Brazil lagged a year from its estimated February 2014 introduction, and was triggered by the occurrence of severe congenital malformations. Dengue (DENV) and chikungunya (CHIKV) invasions tend to show similar response lags. We analyzed geo-coded symptomatic case reports from the city of Merida, Mexico, with the goal of assessing the utility of historical DENV data to infer CHIKV and ZIKV introduction and propagation. About 42% of the 40,028 DENV cases reported during 2008-2015 clustered in 27% of the city, and these clustering areas were where the first CHIKV and ZIKV cases were reported in 2015 and 2016, respectively. Furthermore, the three viruses had significant agreement in their spatio-temporal distribution (Kendall W>0.63; p<0.01). Longitudinal DENV data generated patterns indicative of the resulting introduction and transmission patterns of CHIKV and ZIKV, leading to important insights for the surveillance and targeted control to emerging Aedes-borne viruses.


Subject(s)
Chikungunya Fever/epidemiology , Dengue/epidemiology , Disease Outbreaks , Zika Virus Infection/epidemiology , Aedes/virology , Animals , Chikungunya Fever/transmission , Chikungunya Fever/virology , Chikungunya virus/isolation & purification , Chikungunya virus/physiology , Dengue/transmission , Dengue/virology , Dengue Virus/isolation & purification , Dengue Virus/physiology , Geographic Mapping , Humans , Mexico/epidemiology , Mosquito Control , Mosquito Vectors/virology , Spatio-Temporal Analysis , Zika Virus/isolation & purification , Zika Virus/physiology , Zika Virus Infection/transmission , Zika Virus Infection/virology
19.
PLoS Med ; 13(11): e1002181, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27898668

ABSTRACT

BACKGROUND: Large Phase III trials across Asia and Latin America have recently demonstrated the efficacy of a recombinant, live-attenuated dengue vaccine (Dengvaxia) over the first 25 mo following vaccination. Subsequent data collected in the longer-term follow-up phase, however, have raised concerns about a potential increase in hospitalization risk of subsequent dengue infections, in particular among young, dengue-naïve vaccinees. We here report predictions from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with Dengvaxia in a range of transmission settings, as characterised by seroprevalence levels among 9-y-olds (SP9). These predictions were conducted for the World Health Organization to inform their recommendations on optimal use of this vaccine. METHODS AND FINDINGS: The models adopted, with small variations, a parsimonious vaccine mode of action that was able to reproduce quantitative features of the observed trial data. The adopted mode of action assumed that vaccination, similarly to natural infection, induces transient, heterologous protection and, further, establishes a long-lasting immunogenic memory, which determines disease severity of subsequent infections. The default vaccination policy considered was routine vaccination of 9-y-old children in a three-dose schedule at 80% coverage. The outcomes examined were the impact of vaccination on infections, symptomatic dengue, hospitalised dengue, deaths, and cost-effectiveness over a 30-y postvaccination period. Case definitions were chosen in accordance with the Phase III trials. All models predicted that in settings with moderate to high dengue endemicity (SP9 ≥ 50%), the default vaccination policy would reduce the burden of dengue disease for the population by 6%-25% (all simulations: -3%-34%) and in high-transmission settings (SP9 ≥ 70%) by 13%-25% (all simulations: 10%- 34%). These endemicity levels are representative of the participating sites in both Phase III trials. In contrast, in settings with low transmission intensity (SP9 ≤ 30%), the models predicted that vaccination could lead to a substantial increase in hospitalisation because of dengue. Modelling reduced vaccine coverage or the addition of catch-up campaigns showed that the impact of vaccination scaled approximately linearly with the number of people vaccinated. In assessing the optimal age of vaccination, we found that targeting older children could increase the net benefit of vaccination in settings with moderate transmission intensity (SP9 = 50%). Overall, vaccination was predicted to be potentially cost-effective in most endemic settings if priced competitively. The results are based on the assumption that the vaccine acts similarly to natural infection. This assumption is consistent with the available trial results but cannot be directly validated in the absence of additional data. Furthermore, uncertainties remain regarding the level of protection provided against disease versus infection and the rate at which vaccine-induced protection declines. CONCLUSIONS: Dengvaxia has the potential to reduce the burden of dengue disease in areas of moderate to high dengue endemicity. However, the potential risks of vaccination in areas with limited exposure to dengue as well as the local costs and benefits of routine vaccination are important considerations for the inclusion of Dengvaxia into existing immunisation programmes. These results were important inputs into WHO global policy for use of this licensed dengue vaccine.


Subject(s)
Dengue Vaccines/economics , Dengue Vaccines/standards , Models, Theoretical , Public Health , Safety , Vaccination/methods , Child , Cost-Benefit Analysis , Dengue Vaccines/adverse effects , Humans , Seroepidemiologic Studies , Vaccination/adverse effects , Vaccination/economics , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/economics , Vaccines, Attenuated/standards , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/economics , Vaccines, Synthetic/standards
20.
PLoS Negl Trop Dis ; 10(5): e0004661, 2016 05.
Article in English | MEDLINE | ID: mdl-27227883

ABSTRACT

Dengue vaccines will soon provide a new tool for reducing dengue disease, but the effectiveness of widespread vaccination campaigns has not yet been determined. We developed an agent-based dengue model representing movement of and transmission dynamics among people and mosquitoes in Yucatán, Mexico, and simulated various vaccine scenarios to evaluate effectiveness under those conditions. This model includes detailed spatial representation of the Yucatán population, including the location and movement of 1.8 million people between 375,000 households and 100,000 workplaces and schools. Where possible, we designed the model to use data sources with international coverage, to simplify re-parameterization for other regions. The simulation and analysis integrate 35 years of mild and severe case data (including dengue serotype when available), results of a seroprevalence survey, satellite imagery, and climatological, census, and economic data. To fit model parameters that are not directly informed by available data, such as disease reporting rates and dengue transmission parameters, we developed a parameter estimation toolkit called AbcSmc, which we have made publicly available. After fitting the simulation model to dengue case data, we forecasted transmission and assessed the relative effectiveness of several vaccination strategies over a 20 year period. Vaccine efficacy is based on phase III trial results for the Sanofi-Pasteur vaccine, Dengvaxia. We consider routine vaccination of 2, 9, or 16 year-olds, with and without a one-time catch-up campaign to age 30. Because the durability of Dengvaxia is not yet established, we consider hypothetical vaccines that confer either durable or waning immunity, and we evaluate the use of booster doses to counter waning. We find that plausible vaccination scenarios with a durable vaccine reduce annual dengue incidence by as much as 80% within five years. However, if vaccine efficacy wanes after administration, we find that there can be years with larger epidemics than would occur without any vaccination, and that vaccine booster doses are necessary to prevent this outcome.


Subject(s)
Dengue Vaccines , Dengue/epidemiology , Dengue/prevention & control , Adolescent , Child , Child, Preschool , Computer Simulation , Dengue/economics , Dengue/transmission , Dengue Vaccines/administration & dosage , Dengue Vaccines/economics , Dengue Vaccines/immunology , Epidemics/prevention & control , Female , Forecasting , Humans , Immunization Programs , Immunization, Secondary , Incidence , Male , Mexico/epidemiology , Seroepidemiologic Studies , Vaccination/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...